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Kinetics of anchoring of polymer chains on substrates with chemically active sites
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We consider dynamics of an isolated polymer chain with a chemically active end-bead on a two-dimensional
~2D! solid substrate containing immobile, randomly placed chemically active sites~traps!. For a particular
situation when the end-bead can be irreversibly trapped by any of these sites, which results in a complete
anchoring of the whole chain, we calculate the time evolution of the probabilityPch(t) that the initially
nonanchored chain remains mobile until timet. We find that for relatively short chainsPch(t) follows at
intermediate times a standard-form 2D Smoluchowski-type decay law lnPch(t);2t/ ln(t), which crosses over
at very large times to the fluctuation-induced dependence lnPch(t);2t1/2, associated with fluctuations in the
spatial distribution of traps. We show next that for long chains the kinetic behavior is quite different; here the
intermediate-time decay is of the form lnPch(t);2t1/2, which is the Smoluchowski-type law associated with
subdiffusive motion of the end-bead, while the long-time fluctuation-induced decay is described by the depen-
dence lnPch(t);2t1/4, stemming out of the interplay between fluctuations in traps distribution and internal
relaxations of the chain.@S1063-651X~98!01611-0#

PACS number~s!: 82.35.1t, 05.40.1j, 68.35.Fx, 83.10.Nn
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I. INTRODUCTION

The understanding of polymer dynamics on solid su
strates impacts many areas of modern technology, includ
coating, gluing, painting, or lubrication. Most of the liquid
used in these material processing operations are either p
mer liquids or contain polymeric additives.

Meanwhile, polymer dynamics on bare substrates or
adsorbed polymer films has been studied theoretically
numerically only for model substrates with an ide
crystalline-type order@1–3#. However, recent experimenta
studies@4–9# of polymer monolayers spreading on solid su
strates have given ample evidence that in realistic situat
chain dynamics is strongly influenced by different types
disorder, associated with the presence of contamina
chemically active ‘‘hot’’ sites, or surface roughness. Suc
disorder is unavoidable for real surfaces and induces sig
cant departures from the behavior predicted for model s
tems.

In particular, studies of light polydimethylsiloxane~usu-
ally abbreviated as PDMS! molecules spreading on oxidize
silicon wafers have demonstrated that the form of the PD
diffusivity D is very sensitive to the chemical composition
the surface, or more specifically, to the presence of the
anol sites, which can form a hydrogen bond with any chai
monomer and thus temporarily anchor the chain. Exp
ments reveal@6# an ideal, Rouse-type behavior of the for
D;N21, whereN is the number of monomeric units in
polymer, at low density of such sites. On the other hand
stronger dependence of the formD;N22 is observed@6# at
higher density of the silanol sites, which behavior resemb
the reptative motion and stems apparently from some col
tive effects, associated with trapping of some portion
chains serving then as obstacles for the rest.
PRE 581063-651X/98/58~5!/6134~11!/$15.00
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An even more striking effect of chemical disorder h
been observed in the case of the so-called PDMS-OH p
mers, i.e., the PDMS molecules bearing an OH group at
or at both of the chain’s extremities. The OH group can fo
a strong chemical bond with any of the silanol sites, result
in a complete anchoring of the whole chain by one of
ends. In consequence, despite the fact that the macrosc
spreading power of such a liquid/solid system is positive a
thus favors complete wetting, spreading of a sufficiently th
film of the PDMS-OH molecules terminates at a certain m
ment of time due to the presence of chemically active tr
ping sites~see@8# and @9#!.

Surprisingly enough, dynamics of polymers in the pre
ence of randomly placed traps has not been addressed s
in contrast to the theoretically well-studied problems
chain dynamics on the surface with randomly placed barr
or obstacles~see, e.g.,@10,11# and references therein! or dif-
fusion of monomers in a medium with traps~for a review see
@12–14#!. In the present paper we discuss this practica
important problem focusing first on a simple model app
priate to the just-described situation with the PDMS-O
molecules deposited on a bare silicon wafer with sila
sites. More specifically, we study here dynamics of a sin
polymer, modeled as an ideal Rouse chain with a chemic
active end-bead~see Fig. 1! on a two-dimensional ideal sub
strate with randomly placed perfect immobile traps. The e
bead can be irreversibly trapped upon the first encounter w
any of the traps, which results in anchoring of the who
chain. The dynamics of all the other beads is complet
unaffected by traps. For this model we find explicit resu
for the probabilityPch(t) that the chemically active end-bea
of the chain does not meet any of the trap until timet, or, in
other words, that the polymer chain, which is unanchored
t50, remains completely mobile until timet. Other possible
6134 © 1998 The American Physical Society
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situations involving, in particular, reversible traps or ma
active groups per chain, as well as the effects of the exclu
volume interactions, will be discussed in a forthcoming pu
lication.

The paper is structured as follows. In Sec. II we descr
in more detail the model to be studied and introduce no
tions. In Sec. III we present a reminder on trapping kinet
of a monomer particle, which allows us to explain som
basic ideas concerning the effect of fluctuations in traps’ s
tial distribution on trapping kinetics. Next, in Sec. IV w
show how these results can be extended to describe the
choring kinetics of a Rouse polymer chain and analyze
ferent kinetic regimes. Finally, we conclude in Sec. V with
summary and discussion of our results.

II. THE MODEL

Consider a polymer chain deposited on a two-dimensio
solid surface, Fig. 1, and forming no loops in the directi
perpendicular to the surface. The chain consists ofN11
identical beads, connected into the chain by harmo
springs with rigidityx, x52T/b2, T being the temperature
of the solid substrate andb being the average distance b
tween the beads. The radii of the beads are denoted by
dimensional~time-dependent! vectorsrn , n being the num-
ber of the bead in the chain,n50, . . . ,N, N@1. We
suppose that one of the end-beads of the chain, namely
bead withn50, differs from all others in that it contains
chemically active group, while all other beads are chemica
inert. Assuming that the springs are phantom, which me
that we discard excluded volume interactions, we have
the potential energyU($rn%) of the chain

U~$rn%!5 (
n50

N21

U~rn112rn!5
T

b2 (n50

N21

~rn112rn!2. ~1!

The effect of the excluded volume interactions on the
choring kinetics, which can be rather important for tw
dimensional systems, will be discussed in detail elsewh
Here we will present only some brief comments on this po
at the very end of the paper.

Further on, we suppose that the beads experience an
tion of random forces, which originate from chaotic, therm

FIG. 1. Polymer chain diffusing on a solid surface. The squa
denote immobile, randomly placed chemically active sites—
traps. The filled circle is a chemically active group attached to
polymer.
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vibrations of solid atoms around their lattice positions; t
beads may thus perform random motion along the surf
under the constraints imposed by the springs. Simplifying
actual situation to some extent@15#, we model these random
forces as Gaussian white noisezn,a(t), uncorrelated in time
and space, such that

zn,a~ t !50,
~2!

zn,a~ t !zn8,a8~ t8!52hTdn,n8da,a8d~ t2t8!.

In Eqs.~2! the overline stands for the averaging over therm
noise,da,a8 and dn,n8 are the Kronecker symbols,a5x,y
denote the Cartesian components of random forces, whih
is the friction coefficient, which is dependent on the height
the barrier against the lateral motion and the temperature~see
@15# for more details!.

We suppose next that the surface~of the surface areaS)
containsM perfect, immobile traps, which are placed at ra
dom positions, which are denoted by vectors$Rj%, j
51, . . . ,M . In what follows we will always assume th
limit S,M→` with the fixed mean densityntr5M /S, ntr
!1. Next, we stipulate that the action of the traps on
chain’s beads is selective: the traps have absolutely no e
on all the beads of the chain~except for the end-beadn
50), which means that the traps do not react with the be
with n51, . . . ,N and do not influence their dynamics. O
the contrary, the end-bead is trapped at the first encou
with any trap and gets immobilized anchoring the who
chain. As we have already mentioned, from the physi
point of view such a model mimics the situation wi
PDMS-OH molecules diffusing on silicon wafers with th
silanol sites; here, the silanol sites, i.e., the traps, may fo
strong chemical bonds with the OH groups~end-bead! im-
mobilizing them. On the other hand, these sites form o
weak hydrogen bonds with any other monomer of the PD
molecule. These weak bonds create an additional~small! bar-
rier against the lateral motion; we suppose that the influe
of the silanol sites on the dynamics of the PDMS monom
can be accounted for by introducing some effective fricti
coefficienth. A nontrivial question, as a matter of fact, o
the form of this friction coefficient and its dependence on
polymer length will be discussed elsewhere.

The property which will be studied here is the probabil
Pch(t) that the end-bead of the chain, which is not trapped
t50, remains not trapped until timet. Evidently,Pch(t) de-
termines also the probability that an initially unanchor
chain remains completely mobile until timet. To calculate
the time evolution of this property we will proceed as fo
lows: we will first present a formally exact expression f
Pch(t) and show how its time dependence can be evalua
in the simplest case of a trivial chain withN50, i.e., a single
chemically active monomer. This will allow us to expla
some basic methods and highlight the representative rea
tions of disorder and of the monomer trajectories which s
port the intermediate and the long-time evolution ofPch(t).
Next, we will discuss the characteristic features of dynam
of the polymer chain end-bead, which will allow then for
rather straightforward generalization of the monomer tr
ping problem to a more complicated case with the end-b
of a long polymer chain.
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III. A REMINDER ON THE MONOMER TRAPPING
PROBLEM IN D-DIMENSIONAL SYSTEMS

To fix the ideas, it seems instructive to recall first t
kinetic behavior ofPch(t) in the simplified caseN50, i.e.,
the case of a chemically active monomer diffusing ind di-
mensions and reacting with randomly placed, immobile p
fect traps. It is intuitively clear that in our case with a chem
cally active monomer attached to a chain, we should retri
at sufficiently large times~and up to some renormalization o
the diffusion coefficient! the behavior predicted for a singl
monomer, since for a finite chain random motion of any be
of the chain ultimately converges to conventional diffusi
with a renormalized diffusion coefficient@16#. At shorter
times, however, substantial deviations should be obse
because of essentially nondiffusive behavior of the end-be
induced by internal relaxations of the chain.

The problem of a kinetic description of chemical reactio
between diffusive particles and immobile, randomly distr
uted traps has been widely discussed in the literature wi
the past two decades. Different analytical techniques h
been elaborated, including an extension of the ‘‘optimal flu
tuation’’ method@17#, different methods of bounds~see, e.g.,
@18–22#!, Green functions approach@22#, field-theoretic
treatments@23#, as well as a variety of mean-field-type d
scriptions~see@14,24,25# and references therein!. The inter-
est in this problem was inspired by the physical significan
of the subject and, last but not least, by an early observa
@17# that the long-time survival probability of diffusive pa
ticles exhibits highly nontrivial, fluctuation-induced beha
ior, which is relevant to the so-called Lifschitz singulariti
near the edge of the band in the density of states of a par
in quantum Lorentz gas. Later works~see, e.g.,@22,23#! have
also pointed out the relevance of the issue to the problem
percolation, self-avoiding random walks, or self-attracti
polymers, as well as the anomalous behavior of the grou
state energy of the Witten’s toy Hamiltonian of supersy
metric quantum mechanics@26#.

Consider a single monomer, which diffuses~with diffu-
sion coefficientD0) in a d-dimensional volumeV with ran-
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domly placedM traps, modeled asd-dimensional spheres o
radiusa. Positions of the traps are denoted by$Rj%, where
the subscriptj numerates the traps,j 51, . . . ,M . The prob-
ability Cmon(t;$Rj%) that, for a given realization$Rj% of
traps’ distribution, a diffusive monomer will not encount
any of M traps until timet is given by~see, e.g.,@19,22#!

Cmon~ t;$Rj%!5EVH expF2E
0

t

dt8(
j 51

M

W„r0~ t8!2Rj…G J ,

~3!

where the potentialW„r0(t)2Rj… is the step function, cen
tered around the position of thej th trap, such that

W~r !5H ` ur u<a

0 ur u.a,
~4!

while the symbolEV$ % denotes expectation on the comple
set V of trajectories$r0(t)% of a diffusive monomer. We
note parenthetically that Eq.~3!, which determines the
monomer survival probability for a fixed configuration o
traps, is not, of course, only limited to the case when$r0(t)%
describes conventional diffusion; Eq.~3! is formally exact
for any type of random or regular motion, including the m
tion of the end-bead of a polymer chain, provided that
operatorEV is properly defined.

In what follows we will be interested, however, not in th
behavior of the realization-dependent probabil
Cmon(t;$Rj%), but rather of its realization-averaged valu
Pmon(t), defined as

Pmon~ t !5^Cmon~ t;$Rj%!&$Rj %
, ~5!

where the angular brackets denote here and henceforth
averaging with respect to the distribution of traps positio
$Rj%. For random uncorrelated~Poisson! distribution of the
traps, such an averaging can be carried out straightforwa
@19,22#. Turning to the limitV,M→` and keeping the ratio
M /V5ntr fixed, one finds
Pmon~ t !5EVH )
j 51

M K expF2E
0

t

dt8W„r0~ t8!2Rj…G L
Rj

J 5EVS expH 2ntrE
Rd

dRS 12expF2E
0

t

dt8W„r0~ t8!2R…G D J D ,

~6!
ar-

ed
where the integral with the subscriptRd in the last line of Eq.
~6! signifies that the integration extends over the entired-
dimensional space. It may be worthwhile to note that
function

12expF2E
0

t

dt8W„r0~ t8!2R…G
5H 1, ur0~ t8!2Ru<a, t8P@0;t#

0, ur0~ t8!2Ru.a, t8P@0;t#
~7!

is just the indicator function of the so-called Wiener saus
e

e

~see@18,27# for more details! of sizea, since it equals zero
everywhere except for thea vicinity of any point of the par-
ticle trajectoryr0(t). Consequently, the integral

Vws@r0~ t !#5E
Rd

dRS 12expF2E
0

t

dt8W„r0~ t8!2R…G D
~8!

measures the volume swept out by a diffusive spherical p
ticle of radius a during time t for a particular realization
r0(t) of its trajectory. In this regard, the realization-averag
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probability Pmon(t) can be thought off as the moment gene
ating function of the volume of the Wiener sausage~see@28#
for more details!. We also hasten to remark that Eq.~6! is
quite general and can also be applied to describe the
evolution of the probability that the end-bead of the ch
does not encounter any of the traps until timet; to do this,
we have to define the operatorEV as an expectation on th
set of the end-bead trajectories, whose properties, in gen
will be different from those of a single monomer.

The expression in the last line of Eq.~6! determines an
exact solution of the monomer trapping problem, which
valid at all times. Calculation ofPmon(t) amounts now to
performing averaging over the monomer trajectories. S
an averaging procedure has been extensively discusse
@17–19,22# using different types of analytical approache
Here we intentionally choose a method of bounds am
other theoretical considerations, because it gives us a p
bility not only to display in the most simple fashion th
evolution ofPmon(t) at intermediate and large times, but al
to highlight the representative monomer trajectories, wh
support the corresponding decay pattern. This method all
also for a rather straightforward computation of the ana
gous probability not to encounter any of the traps until tim
t in a more complicated situation with an active particle
tached to a polymer chain.

A. Intermediate-time behavior of Pmon„t…

Following Ref.@22#, a lower bound onPmon(t) in Eq. ~6!
which describes properly the intermediate-time decay pat
can be readily found by making use of the Jensen-type
equality; this states that the averaged value of an expone
of some random functionf is greater than or equal to th
exponential of the averaged value of this function; i.e.,

E$exp~2 f !%>exp~2E$ f %!. ~9!

Hence, by setting

f 5expH 2ntrE
Rd

dRS 12expF2E
0

t

dt8W@r0~ t8!2R#G D J ,

~10!

and applying the inequality in Eq.~9!, one finds thatPmon(t)
can be bounded from below by

Pmon~ t !>exp„2ntrEV$Vws@r0~ t !#%…. ~11!

The time evolution of the functionEV$Vws@r0(t)#% has been
discussed, in particular, in Refs.@22# and @28#. It has been
shown that expectation of the Wiener sausage volume ob

EV$Vws@r0~ t !#%5SdE
a

`

r d21drL l
21F G~r ;l!

lG~a;l!G
5E

0

t

dt8Kd~ t8!, ~12!

where Sd is the surface area of ad-dimensional sphere o
radius a, Sd52pd/2/G(d/2), G(x) being the gamma func
tion, L l

21@ # denotes the inverse Laplace-transform opera
Kd(t) is equal to the diffusive current through the surface
-
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a d-dimensional immobile, adsorbing sphere of radiusa †i.e.,
Kd(t) is the d-dimensional analog of the so-called Smol
chowski constant@29,30#‡, while

G~r ;l!5E
0

`

dt exp~2lt !G~r ;t !, ~13!

where~the propagator! G(r ;t) is the probability of finding a
diffusive particle at distancer from the starting point at time
t. Explicitly, one has that in the limitt@a2/D0 the expecta-
tion of the Wiener sausage volume or the time integral of
Smoluchowski-type constant shows the following asympto
cal behavior:

EV$Vws@r0~ t !#%5E
0

t

dt8Kd~ t8!

'H 4paD0t, d53

4pD0t/ ln~4D0t/a2!, d52

4~D0t/p!1/2, d51,

~14!

which thus depends on the spatial dimensiond. This implies
that in systems of different dimensionality the typical num
ber of intersections of the Wiener sausage behaves quite
ferently. Discussion of this point in terms of compact a
noncompact exploration of space by random walk trajec
ries, as well as the relation between the mean volume of
Wiener sausage and the Smoluchowski-type rate cons
was presented first in@31#. We note also that Eq.~12! allows
for computation of the mean Wiener sausage volume for
trajectories of the end-bead, provided that its propaga
Gch(r ;t) is known ~see Sec. IV A!.

Consequently, the bound based on the Jensen-type
equality leads to the result

Pmon~ t !>PSmol~ t !5expF2ntrE
0

t

dt8Kd~ t8!G , ~15!

where the expression on the right-hand side of Eq.~15!, as
first noted in@22#, is tantamount to the solution of the mono
mer trapping problem in terms of the celebrated Smo
chowski approach@29,30#. It is well known from numerical
studies of the monomer trapping problem~see, e.g.,@32#!
that an approximationPmon(t)'PSmol(t) describes fairly
well the intermediate time behavior of the survival probab
ity and fails to describe the decay properly only at very lar
times, when certain fluctuation effects come into play. T
crossover times from the intermediate-time to t
fluctuation-induced behavior will be discussed in the n
subsection.

B. Long-time behavior of Pmon„t…

Note now that the just outlined derivation@22# of the
Smoluchowski-type result in Eq.~15! demonstrates that a
approximationPmon(t)'PSmol(t) is equivalent to a certain
assumption concerning the representative class of the m
mer’s trajectoriesr0(t), which is embodied in the Jense
inequality. This can be most easily seen if we setF5
exp(2f) and rewrite formally the inequality in Eq.~9! as
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E$F%>exp@E$ ln~F !%#. ~16!

One notices now that the Jensen inequality Eq.~9! bounds
the averaged value of the functionalF by an exponential of
the averaged logarithm of this functional; since a logarit
is a very slowly varying function, it is generally believed th
the behavior of the averaged logarithm of some functiona
supported by typical realizations of disorder. Consequen
one may claim that the Smoluchowski-type decay l
Pmon(t)'PSmol(t), which describes properly th
intermediate-time behavior, is supported bytypical realiza-
tions of random walk trajectoriesr0(t), i.e., such thatr0(t)
;t1/2. In what follows we will thus refer to the behavio
supported by typical realizations of random walk trajector
as themean-field typebehavior.

On the other hand, at completely random placemen
traps their local density will deviate throughout the volum
from the volume-average valuentr ; there will be spatial re-
gions in which the density of traps is higher thanntr , as well
as regions containing no traps at all. One may thus exp
that at larget only those monomers will survive that appe
initially in sufficiently large trap-free regions and do n
leave these regions until timet. Such restricted, atypical tra
jectoriesr0(t), which also belong to the setV and which are
not taken into account in the Smoluchowski solution, w
contribute additively to the value of the probabilityPmon(t).
Consequently, one may expect that the overall probab
Pmon(t) will be of the form ~see@22# for more details!

Pmon~ t !'PSmol~ t !1Pfl~ t !, ~17!

where the first term determines the behavior stemming ou
typical realizations of random walk trajectories, while t
second one represents the contribution of constrained tra
tories entirely remaining within the trap-free regions.

Let us discuss now in more detail the contribution to t
overall survival probability stemming out of the constraine
atypical trajectories. As in the preceding subsection, we
determine their contribution evaluating a lower bound
Pmon(t); for this purpose we adapt to the path-integral fo
mulation of the problem the approach developed origina
for three-dimensional systems in Ref.@27# and, indepen-
dently, for arbitraryd in Ref. @20#.

We start again with the expression for the survival pro
ability of a monomer diffusing in the presence of traps fix
at positions$Rj%, which is given by Eq.~3!. The basic idea
for evaluating the lower bound on the right-hand side of E
~3! and, subsequently, onPmon(t), is now as follows.

~i! Suppose that in calculating an expectation of a posi
definite functional on a set of random walk trajectories
extend the integration not over the entire set of all poss
trajectoriesV, but only over some subsetv of it, vPV. In
doing so, we evidently diminish the actual averaged val
consequently, one has

EVH )
j 51

M

expF2E
0

t

dt8W„r0~ t8!2Rj…G J
>EvH )

j 51

M

expF2E
0

t

dt8W„r0~ t8!2Rj…G J . ~18!
is
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~ii ! Let us define the subsetv. To do this, we first as-
sume, without lack of generality, that a diffusive monomer
at the origin att50 and that the trap nearest to the origi
say, the trap withj 51, is at distanceR. Now, we stipulate
that v is formed by such trajectoriesr0(t) which start at the
origin at t50 and during time intervalt do not cross the
surface of ad-dimensional sphere of radiusR. ~Actually, it
means that the number of traps is effectively increased
introducing additional traps which cover completely the s
face of ad-dimensional sphere of radiusR centered around
the origin. This certainly can only diminish the bound.! For
the trajectoriesr0(t)Pv, we evidently have that

)
j 51

M

expF2E
0

t

dt8W„r0~ t8!2Rj…G51, ~19!

since neither of such trajectories reaches any of the tr
Consequently, we find from Eq.~18! that

EVH )
j 51

M

expF2E
0

t

dt8W„r0~ t8!2Rj…G J >P~R;t !5Ev$1%,

~20!

in whichP(R;t) denotes the measure of the trajectories co
prising the subsetv. Eventually, one finds that the monom
survival probability is bounded by@20,27#

Pmon~ t !>P~R;t !P~R!, ~21!

whereP(R) is the probability of having a trap-free spheric
void of radiusR.

For random uncorrelated~Poisson! distribution of traps
the probability of finding a spherical cavity of radiusR com-
pletely devoid of traps is given by

P~R!;exp~2ntrvdRd!, ~22!

where vd5@2pd/2/dG(d/2)# is the volume of a d-
dimensional sphere of unit radius. The measureP(R;t) of
trajectories comprising the subsetv equals the probability
that a diffusive particle, which starts at the origin att50,
does not hit the sphere atur u5R until time t. This probability
is given asymptotically by

P~R;t !;expS 2gd

D0t

R2 D , ~23!

gd being a dimensionlessd-dependent number,g1,35p2,
andg2'2.41. Combining Eqs.~23!, ~22!, and~21! one finds
@20,27#

Pmon~ t !>expS 2gd

D0t

R2
2ntrvdRdD , ~24!

which bound is valid forany value ofR. Hence, one has to
choose suchR which provides the maximal value to th
right-hand side of Eq.~24!. The maximal lower bound ob
tains for
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R5R* ~ t !5S 2gd

dvd

D0t

ntr
D 1/~d12!

. ~25!

Note now thatR* (t) shows a slow growth with time. This
implies that as time progresses larger and larger trap-
voids contribute most importantly. Equation~25! allows us
to determine the representative atypical realizations m
precisely: these are such realizations of random walk tra
tories r0(t) which grow with time not faster thanR* (t)
;t1/(d12), i.e., they are essentially more spatially confin
than the typical ones, for which one hasr0(t);t1/2. That this
should be the case is intuitively clear since only those r
dom walks survive at large times which do not make t
large excursions from their starting point.

The bound corresponding toR5R* (t) now reads@20#
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Pmon~ t !>Pfl~ t !5exp„2ndntr
2/~d12!~D0t !d/~d12!

…, ~26!

where nd are d-dependent numerical factors; in particula
for two- and three-dimensional systemsnd is given, respec-
tively, by n252z0Ap, wherez0'2.405 is the first zero of
Bessel functionJ0(x), andn355341/5p8/5/3 @20#. In what
follows we will refer to the decay laws in Eq.~26! as
fluctuation-induced, since such a behavior results from th
presence of fluctuations in the spatial distribution of tra
and, respectively, from atypical realizations of random w
trajectories.

Gathering Eqs.~15! and~26!, we have now the following
result for the time evolution ofPmon(t) in two-dimensional
systems, which will serve us in what follows as a point
reference,
Pmon~ t !'H exp@24pntrD0t/ ln~4D0t/a2!#, a2/D0,t,tc

exp@2n2~ntrD0t !1/2#, t.tc . ~27!
or
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In Eqs.~27!, the timetc denotes the crossover time, separ
ing the Smoluchowski-type and the fluctuation-induced
netic regimes; this characteristic time is given by

tc5
z0

2a2

4D0s tr
ln2S z0

2

s tr
D , ~28!

in which equation the parameters5pa2ntr determines the
area of the surface covered by traps.

Lastly, several comments on the magnitude of the cro
over time and the relative importance of two regimes d
played in Eq.~27! are in order. On comparing the terms
the exponentials of Eqs.~15! and~26!, we infer that atypical
realizations become progressively more important at s
times whenD0tc becomes greater thans tr

22 , s tr
21 ln2(str),

ands tr
23/2 for one-, two-, and three-dimensional systems,

spectively. Thus the crossover time may be quite large
systems in which the area covered by traps is low. Moreo
there is another subtle circumstance which makes
fluctuation-induced tail, generally speaking, not pertinent
real experimental systems. Namely, the point is that
amount of particles reacting at the intermediate-ti
Smoluchowski-type kinetic stage is usually comparable
the total amount of particles in the system such that up to
time tc only a few particles are left. Numerical simulations
the monomer trapping kinetics~see@32#!, which observe the
Smoluchowski-type regime and enter into the fluctuatio
induced one, suggest that, in particular, in three dimens
the fluctuation-induced regime shows up whenPmon(t) drops
below 10216, 10225, 10236, and 10280 for s tr equal to 0.25,
0.10, 0.05, and 0.01, respectively. In two dimensions t
should not be so dramatic as in 3D, but still the value
Pmon(tc), which is defined as

Pmon~ tc!'exp@2z0
2 ln~z0

2/s tr!#, ~29!
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can be very small due to the appearance of the fact
2 ln(str) in the exponent. Equation~29! suggests that in two
dimensions the values ofPmon(t) at the crossover will equa
1028, 10210, 10212, and 10216 for s tr equal to 0.25, 0.10,
0.05, and 0.01, respectively. We set out to show, howe
that for a chemically active monomer attached to along
polymer chain the situation may change considerably s
that the value ofPmon(t) at the crossover timetc will not be
that small. This resembles, in a way, behavior predicted
the reverse counterpart of the problem to be conside
here—the trapping of diffusive monomers on traps arran
in polymer chains. For this problem it has also been sho
that the fluctuation-induced behavior starts at much ear
times and most of particles are trapped via the fluctuati
induced mechanism@14#. We also note that a similar effec
of strong reinforcement of the magnitude of the fluctuatio
induced kinetics has been predicted for reactions involv
active particles attached to movable polymer chains in so
tion @33#.

IV. ANCHORING KINETICS OF A ROUSE POLYMER
CHAIN WITH A CHEMICALLY ACTIVE END-BEAD

In this section we will make use of the bounds, display
in Eqs. ~15! and ~26!, for computation of the probability
Pch(t) that an active monomer attached to one of the
tremities of a Rouse polymer chain still remains untrapp
until time t. Consequently, as in the case with a single d
fusive monomer, we have to determine the form of two
sential parameters: the Smoluchowski-type constant des
ing reactions between the active end-bead and traps, an
probabilityP(R;t) that the end-bead of a long polymer cha
remains within a trap-free cavity of radiusR until time t.
While behavior ofKd(t) has been already discussed in t
literature within the context of reactions between partic
attached to polymers~see Refs.@14,31,33#!, the form of the
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probabilityP(R;t) has not been considered so far. Clear
computation of bothKd(t) andP(R;t) requires the knowl-
edge of the end-bead dynamics.

A. Langevin dynamics of the end-bead
of a Rouse polymer chain

Let us briefly outline the Langevin equation description
the Rouse polymer chain dynamics on a two-dimensio
surface. In neglect of the excluded volume interactions
regarding the numbern of the bead in the chain as a contin
ous variable,nP@0,N#, one has that dynamics of the vect
of the nth bead is governed by the following Rous
Langevin equation~for more details see@16#!:

h
]rn

]t
5

2T

b2

]2rn

]n2
1zn~ t !, ~30!

where zn(t) are random forces, whose properties are
scribed by Eq.~2!. Solution of Eq.~30!, which corresponds
to the free boundary conditions at the chain extremities@16#,
i.e.,

]rn50~ t !

]n
50;

]rn5N~ t !

]n
50, ~31!

can be written down as the Fourier series of the form

rn~ t !5 (
p52`

`

Xp cosS ppn

N D , ~32!

where the two-dimensional vectorsXp are the normal coor-
dinates of Eq.~30! ~see@16#!. For further analysis it suffices
to know only their time correlation functions:

Xp,a~ t !Xq,a8~0!5dp,qda,a8

D0tR

Np2
expS 2

p2t

tR
D ~33!

for p.0, and

@X0,a~ t !2X0,a~0!#@X0,a8~ t !2X0,a8~0!#5da,a8

2D0t

N
~34!

for p50. In Eqs.~33! and ~34!, the symbolsa,a85x,y de-
note, as before, the Cartesian components of the norma
ordinates andtR is the largest relaxation time of the chai
tR5b2N2/2p2D0 . Physically,tR can be interpreted as bein
the time needed for some local defect, e.g., kink, to spr
out diffusively with diffusion constantD0 along the ar-
clengthbN of the chain.

Now, the property of interest for us is the moment gen
ating function for displacements of the chain’s end-be
which determines its propagatorGch(r ;t) and thus contains
the information we need for calculation ofKd(t) and
P(R;t). The moment generation function is defined as

F~k!5exp@ ik•rn50~ t !#. ~35!

The averaging in Eq.~35! over Gaussian white noise can b
performed straightforwardly, using Eq.~32! and the expres-
,

f
al
d

-

o-

d

-
,

sions for the time correlation functions of the normal coo
dinates. One finds after some simple calculations

F~k!5expS 2
k2

4
rn50

2 ~ t ! D5exp~2k2D0t!, ~36!

where the effective ‘‘time’’t is a single-valued complicate
function of real timet:

t5t~ t !5
t

N
1

2tR

N (
p51

p22F12expS 2
p2t

tR
D G . ~37!

Equation~36! implies that the probability of finding the end
bead at distancer from the starting point at timet is a stan-
dard Gaussian function

Gch~r ;t !5
1

4pD0t~ t !
expS 2

r 2

4D0t~ t ! D . ~38!

Consequently, dynamics of the end-bead of a polymer ca
considered as that of a single monomer evolving in timet.

Asymptotical dependence oft on t can be readily calcu-
lated from Eq.~37!, which gives

t~ t !'H t/N, t.tR

b~ t/pD0!1/2, t,tR .
~39!

Equation ~39! signifies thatt scales with time differently
depending on whethert is less than or greater than the fu
damental relaxation timetR . We note also that the end-bea
mean-square displacement~MSD! displays different time-
behavior fort!tR and t@tR ; for t!tR the motion of the
end-bead is due mainly to the internal relaxation of the cha
At such time scales

rn50
2 ~ t !'4bS D0t

p D 1/2

, ~40!

which differs from conventional diffusion law in that th
trajectory of the end-bead is spatially more confined. In
opposite time limit,t@tR , the chain diffuses as one entit
and the end-bead trajectories follow the motion of t
chain’s center of mass. In this regime the end-bead M
obeys

rn50
2 ~ t !'

4D0t

N
, ~41!

i.e., conventional diffusion law with reduced diffusion coe
ficient D5D0 /N.

We close this subsection with the following conclusio
Dynamics of the end-bead of a Rouse polymer is stron
influenced by the presence of the polymeric ‘‘tail;’’ at time
less than the fundamental timetR the end-bead trajectorie
are spatially more confined compared to conventional dif
sion and its MSD shows a sublinear growth with time, E
~40!. At greater times, the MSD grows linearly with time b
the diffusion coefficient is a factor of 1/N less than that for a
monomer, Eq.~41!. Nonetheless, in view of the form of Eqs
~36! and ~38!, the dynamics of the chain’s end-bead can
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considered as that of an individual diffusive monomer, wh
evolves in effective ‘‘time’’t. We will use this observation
in what follows to estimate the time evolution ofKd(t) and
P(R;t).

B. Time evolution of Pch„t…

Consider first the contribution toPch(t) stemming out of
typical realizations of the end-bead trajectories, which pr
lem amounts to calculation of the Smoluchowski-type co
stantKd(t) for an active group attached to a polymer cha
This question was first addressed in@31# and@33# within the
context of chemical reactions involving particles attached
movable polymer chains in solution~for a general discussion
see@14#!. It has been shown that the form of the time depe
dence ofKd(t) depends on the time of observationt: for
times t less than the largest relaxation time of the chain,
Smoluchowski-type constant for a chemically active mon
mer attached to a polymer chain should follow@31#
-
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Kd~ t !;
@rn50

2 ~ t !#d/2

t
. ~42!

For a Rouse chain on a two-dimensional substrate, it giv
in particular,

K2~ t !;bS D0

t D 1/2

. ~43!

On the other hand, within the opposite limit, i.e., fort
@tR , when conventional diffusive motion with a renorma
ized diffusion coefficient is restored, one has~up to the re-
placementD0→D0 /N) conventional behavior as in Eq.~14!.

Let us now compute the time evolution of the Smol
chowski constant making use of Eq.~12!, which will allow
us to determine also the prefactors. Substituting the propa
tor in Eq.~38! into Eq.~12!, we have that for the end-bead o
a Rouse polymer chain the expectation of the Wiener s
sage volume obeys
E$Vws@rn50~ t !#%54pD0L l
21S E

0

`

dt exp†2lt2a2/4D0t~ t !‡

lE
0

`

dtt21~ t !exp†2lt2a2/4D0t~ t !‡
D . ~44!
rd

t

Consider the asymptotical behavior ofE$Vws@rn50(t)#% in
the limits t,tR and t.tR . Supposing thattR is large and
settingt(t)5b(t/pD0)1/2, we find that the integrals in the
nominator and the denominator in Eq.~44! behave as 1/l
andp(D0 /l)1/2/b, respectively. One finds then

E$Vws@rn50~ t !#%5E
0

t

dt8K2~ t8!'8b~D0t/p!1/2, ~45!

which holds for the time intervala2/D0,t,tR . Next, we
have that in the limitt.tR the effective timet(t)'t/N. For
such a time dependence both integrals in Eq.~44! can be
performed explicitly. This yields, upon some straightforwa
calculations, the following result:

E$Vws@rn50~ t !#%5E
0

t

dt8K2~ t8!

'4pD0t/N ln~4D0t/a2N!, ~46!

which is valid for timest.tR . Consequently, we find tha
the time evolution ofPch(t) due totypical trajectories of the
end-bead is defined by
PSmol~ t !'H exp@28bntr~D0t/p!1/2#, a2/D0,t,tR

exp@24pntrD0t/N ln~4D0t/a2N!#, t.tR ,
~47!
xi-
where the first line in Eq.~47! corresponds to the subdiffu
sive motion of the chemically active end-bead, while t
second one describes the Smoluchowski-type decay pa
in the regime when the trajectories of the end-bead star
follow the motion of the chain’s center of mass.

To consider now the contribution to the decay of t
atypical realizations of the end-bead trajectories, constra
not to leave the fluctuation trap-free voids until timet, we
suppose that the probability that the end-bead remains w
circular trap-free void of radiusR until time t equals the
probability that an individual diffusive particle remain
rn
to

ed

a

within such a cavity until timet(t). Such an assumption
gives

P~R;t !'expS 2g2

D0t~ t !

R2 D . ~48!

Hence, the contribution toPch(t) due to atypical realizations
of the polymer end-bead trajectories can be found by ma
mizing ~with respect toR) the following expression:
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Pfl~ t !'max
R

FexpS 2ntrv2R22g2

D0t~ t !

R2 D G , ~49!

where the first term determines the probability of having
trap-free circle of radiusR, while the second one gives th
probability that the end-bead remains within such a cir
until time t.

Maximizing the right-hand side of Eq.~49!, one readily
finds that the value ofR which yields the maximal value o
the lower bound is given by

R5R* ~ t !5S 2g2

2v2

D0t~ t !

ntr
D 1/4

;H ~D0t/ntr
2!1/8, t,tR

~D0t/Nntr!
1/4, t.tR ,

~50!

which implies that the representative atypical realizations
the end-bead trajectories behave differently depending on
scale of observation; for timest less thantR , atypical trajec-
tories of r0(t) do not grow faster thant1/8, while within the
opposite limit they are constrained byr0(t),R* (t);t1/4.
be

re
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Consequently, the contribution due to atypical realizatio
can be written down explicitly as

Pfl~ t !'H exp@2n2~bntr!
1/2~D0t/p!1/4#, a2/D0,t,tR

exp@2n2~ntrD0t/N!1/2#, t.tR .
~51!

Now, to construct an actual decay pattern describing the
choring kinetics in the case of an active monomer attache
a polymer chain, we have to compare four different dec
laws displayed in Eqs.~47! and~51! and calculate the corre
sponding crossover times. From Eq.~17!, which states that
the mean-field and the fluctuation-induced decay la
complement each other, we infer that different possible
quences of kinetic regimes may be observed, depending
the magnitude of the parametersntr and N, or, more pre-
cisely, depending on the relation betweenntr andRg , where
Rg5bN1/2 is the chain’s gyration radius.

Let us start with the case of sufficiently short chains a
low trap concentration, which limit is described by two in
equalities:abntr!1 andntrRg

2!1. In this case we predict fo
the time evolution ofPch(t) the following sequence of re
gimes:
Pch~ t !'H exp@28bntr~D0t/p!1/2#, a2/D0,t,tR

exp@24pntrD0t/N ln~4D0t/a2N!#, tR,t,tc

exp@2n2~ntrD0t/ !1/2#, t.tc ,

~52!
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ll
where the crossover time from the Smoluchowski-type
havior to the long-time fluctuation-induced tail is given by

tc5
z0

2a2N

4D0s tr
ln2S z0

2

s tr
D , ~53!

i.e., it is greater by a factor ofN than the corresponding
crossover time for the monomer trapping problem.

Compare now the relative importance of the kinetic
gimes displayed in Eq.~52!. First of all, we note that the
Smoluchowski-type regime associated with the subdiffus
behavior of the end-bead@first line in Eq.~52!# is not repre-
sentative: although it can persist over a wide time range iftR
is large, the number of active groups trapped via this de
-

-

e

y

law is low, since Pmon(t5tR)'exp„28(ntrRg
2)/(2p)1/2

…

'1. Consequently, here we encounter essentially the s
behavior as in the monomer trapping problem@see Eq.~27!#;
we note that evenPmon(t5tc) appears to be the same as th
in Eq. ~29!. Hence, in this limit the only effect of the poly
mer tail is that the crossover time between t
Smoluchowski-type and the fluctuation-induced behav
gets increased.

Next we turn to the opposite limit of long chains, suc
that ntrRg

2@1, but still assume that the trap concentration
sufficiently small andabntr!1. Here the comparison of th
decay laws in Eqs.~47! and ~51! suggests that the overa
decay pattern is a succession of three different regimes:
Pch~ t !'H exp@28bntr~D0t/p!1/2#, a2/D0,t,tc5z0
4p2/44D0~bntr!

2

exp@2n2~bntr!
1/2~D0t/p!1/4#, tc,t,tR ,

exp@2n2~ntrD0t/N!1/2#, t.tR ,

~54!
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i.e., the Smoluchowski-type decay law associated with
subdiffusive motion of the end-bead, the fluctuation-induc
regime corresponding to the same anomalous motion of
end-bead, and lastly, the fluctuation-induced regime co
sponding to conventional diffusive motion~with renormal-
ized diffusion coefficient! of the end-bead.

We note now that in the limitntrRg
2@1, the crossover time

tc from the Smoluchowski-type to the fluctuation-induc
behavior is given by

tc'~D0b2s tr
2!21, ~55!

i.e., it is proportional to the second inverse power ofs tr and
can be large ifs tr!1 ~but still less thantR). Taking the
value of Pch(t) at the crossover timetc , we find that
Pch(tc)'exp(2pz0

2/2), i.e., it is independent of both the con
centration of traps and the chain length. Since herePch(tc)
'1024.5, we infer that such a mean-field-type regime will b
rather representative; however, the amount of active e
beads of polymers trapped via this law will be substantia
less as that for individual monomers. Consequently, cont
to the previously considered situation with short chains, h
the amount of polymers anchored via the fluctuation-indu
decay law in the second line in Eq.~54! will be much higher.
Lastly, we note that the value ofPch(t) at the end of this
kinetic stage is

Pch~ t5tR!'exp@2~ntrRg
2!1/2#, ~56!

i.e., it is very small in the limit under consideration. Henc
the regime described by the third line in Eq.~54! will not be
observed.

We close our analysis with some remarks concerning
excluded-volume effects, which are discarded here but m
be certainly very important, especially for two-dimension
systems. We note that excluded-volume interactions imp
additional constraints on the end-bead dynamics which
result apparently in a slower growth, compared to Eq.~40!,
of the end-bead MSD at the intermediate times~less than
characteristic relaxation time of the 2D chain with exclude
volume interactions!, and a strongerN dependence, com
pared to Eq.~41!, of the end-bead diffusion coefficient in th
long-time limit. Consequently, one expects that the beha
in Eqs. ~47a! and ~51a!, @and accordingly, the intermediat
kinetic stages in Eqs.~52a!, ~54a!, and ~54b!#, which are
associated with internal relaxations of the chain and ano
lous end-bead dynamics, would be described by stretch
exponential dependences with different~compared to 1/2 and
1/4! values of the dynamical exponents. On the other ha
the long-time behavior as in Eqs.~47b! and~51b! @as well as
that in Eqs.~52b!, ~52c!, and ~54c!# will remain essentially
.
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unchanged except thatN will enter in a somewhat differen
power. Lastly, we would like to mention that our qualitativ
conclusions concerning different realizations of disord
which support the intermediate-time and long-time behavi
will hold even in the presence of the excluded-volume int
actions; in other words, we expect that also in this case
intermediate-time behavior ofPch(t) will be supported by
typical realizations of the end-bead trajectories, while
long-time behavior will stem out from the interplay betwe
the internal relaxations of the chain and fluctuations in
spatial distribution of traps.

V. CONCLUSIONS

To summarize, we have studied Rouse-Langevin dyna
ics of an isolated polymer chain bearing a chemically act
functional group, attached to one of the chain’s extremiti
on a 2D solid substrate with immobile, randomly plac
chemically active sites~traps!. For a particular situation
when the end-bead of a chain consisting ofN segments can
be irreversibly trapped by any of these sites, which result
a complete anchoring of the whole chain, we calculate
time evolution of the probabilityPch(t) that the initially un-
anchored chain remains mobile until timet. We show that in
the case of relatively short chains the time evolution
Pch(t) proceeds essentially in the same way as that for
monomer trapping problem; at intermediate timesPch(t) fol-
lows a standard-form 2D Smoluchowski-type decay l
ln Pch(t);2t/N ln(t), which crosses over at very large time
to the fluctuation-induced stretched-exponential depende
ln Pch(t);2(t/N)1/2, stemming out of fluctuations in the
spatial distribution of traps. We find next that for long chai
the kinetic behavior is quite different; here two represen
tive kinetic stages are the intermediate-time decay of
form ln Pch(t);2t1/2, while the long-time stage is describe
by the dependence lnPch(t);2t1/4. The intermediate-time
decay is the Smoluchowski-type law associated with sub
fusive motion of the end-bead, while the long-tim
fluctuation-induced decay stems out of the interplay betw
fluctuations in traps distribution and internal relaxations
the chain.
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