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We consider dynamics of an isolated polymer chain with a chemically active end-bead on a two-dimensional
(2D) solid substrate containing immobile, randomly placed chemically active &itgs9. For a particular
situation when the end-bead can be irreversibly trapped by any of these sites, which results in a complete
anchoring of the whole chain, we calculate the time evolution of the probalBilitft) that the initially
nonanchored chain remains mobile until timeWe find that for relatively short chainB(t) follows at
intermediate times a standard-form 2D Smoluchowski-type decay |&y,(t) ~ —t/In(t), which crosses over
at very large times to the fluctuation-induced dependené&gin) ~ —t?, associated with fluctuations in the
spatial distribution of traps. We show next that for long chains the kinetic behavior is quite different; here the
intermediate-time decay is of the formMg(t)~ —t*2 which is the Smoluchowski-type law associated with
subdiffusive motion of the end-bead, while the long-time fluctuation-induced decay is described by the depen-
dence InP4(t)~—t¥4 stemming out of the interplay between fluctuations in traps distribution and internal
relaxations of the chainS1063-651X%98)01611-0

PACS numbg(s): 82.35:+t, 05.40:+j, 68.35.Fx, 83.10.Nn

I. INTRODUCTION An even more striking effect of chemical disorder has
been observed in the case of the so-called PDMS-OH poly-
The understanding of polymer dynamics on solid sub-mers, i.e., the PDMS molecules bearing an OH group at one
strates impacts many areas of modern technology, includingr at both of the chain’s extremities. The OH group can form
coating, gluing, painting, or lubrication. Most of the liquids a strong chemical bond with any of the silanol sites, resulting
used in these material processing operations are either polin a complete anchoring of the whole chain by one of its
mer liquids or contain polymeric additives. ends. In consequence, despite the fact that the macroscopic
Meanwhile, polymer dynamics on bare substrates or irspreading power of such a liquid/solid system is positive and
adsorbed polymer films has been studied theoretically anthus favors complete wetting, spreading of a sufficiently thin
numerically only for model substrates with an ideal, film of the PDMS-OH molecules terminates at a certain mo-
crystalline-type ordefl1-3]. However, recent experimental ment of time due to the presence of chemically active trap-
studieg 4—9] of polymer monolayers spreading on solid sub-ping sites(see[8] and[9]).
strates have given ample evidence that in realistic situations Surprisingly enough, dynamics of polymers in the pres-
chain dynamics is strongly influenced by different types ofence of randomly placed traps has not been addressed so far,
disorder, associated with the presence of contaminant®) contrast to the theoretically well-studied problems of
chemically active “hot” sites, or surface roughness. Such achain dynamics on the surface with randomly placed barriers
disorder is unavoidable for real surfaces and induces signifier obstaclessee, e.9.[10,11] and references thergior dif-
cant departures from the behavior predicted for model systusion of monomers in a medium with traffer a review see
tems. [12-14). In the present paper we discuss this practically
In particular, studies of light polydimethylsiloxarfasu-  important problem focusing first on a simple model appro-
ally abbreviated as PDMSnolecules spreading on oxidized priate to the just-described situation with the PDMS-OH
silicon wafers have demonstrated that the form of the PDM3nolecules deposited on a bare silicon wafer with silanol
diffusivity D is very sensitive to the chemical composition of sites. More specifically, we study here dynamics of a single
the surface, or more specifically, to the presence of the silpolymer, modeled as an ideal Rouse chain with a chemically
anol sites, which can form a hydrogen bond with any chain'sactive end-beagsee Fig. ] on a two-dimensional ideal sub-
monomer and thus temporarily anchor the chain. Experistrate with randomly placed perfect immobile traps. The end-
ments reveal6] an ideal, Rouse-type behavior of the form bead can be irreversibly trapped upon the first encounter with
D~N~1 whereN is the number of monomeric units in a any of the traps, which results in anchoring of the whole
polymer, at low density of such sites. On the other hand, ®&hain. The dynamics of all the other beads is completely
stronger dependence of the folbr~N~?2 is observed6] at  unaffected by traps. For this model we find explicit results
higher density of the silanol sites, which behavior resemblegor the probabilityP(t) that the chemically active end-bead
the reptative motion and stems apparently from some colleosf the chain does not meet any of the trap until timer, in
tive effects, associated with trapping of some portion ofother words, that the polymer chain, which is unanchored at
chains serving then as obstacles for the rest. t=0, remains completely mobile until tinte Other possible
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vibrations of solid atoms around their lattice positions; the
beads may thus perform random motion along the surface
under the constraints imposed by the springs. Simplifying the
actual situation to some extelit5], we model these random
forces as Gaussian white noigg,(t), uncorrelated in time
and space, such that
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In Egs.(2) the overline stands for the averaging over thermal
noise, 8, ,» and é, ,» are the Kronecker symbolsy=x,y
FIG. 1. Polymer chain diffusing on a solid surface. The squaresdenote _th_e Cartes_la_n comp_one_nts of random forces, \.N;h"e
denote immobile, randomly placed chemically active sites—the> the fr|_ct|on C(_)eff|C|ent, which is _dependent on the height of
traps. The filled circle is a chemically active group attached to th he barrier agamSt_the lateral motion and the temperasere
polymer. 15] for more details

We suppose next that the surfa@é the surface are8)

situations involving, in particular, reversible traps or manycontainsM perfect, immobile traps, which are placed at ran-
active groups per chain, as well as the effects of the excludedom positions, which are denoted by vectofR;}, ]
volume interactions, will be discussed in a forthcoming pub-=1, ... M. In what follows we will always assume the
lication. limit S;M—~ with the fixed mean densityh,=M/S, ny

The paper is structured as follows. In Sec. Il we describe<1. Next, we stipulate that the action of the traps on the
in more detail the model to be studied and introduce notachain’s beads is selective: the traps have absolutely no effect
tions. In Sec. Ill we present a reminder on trapping kineticson all the beads of the chaifexcept for the end-bead
of a monomer particle, which allows us to explain some=0), which means that the traps do not react with the beads
basic ideas concerning the effect of fluctuations in traps’ spawith n=1, ... N and do not influence their dynamics. On
tial distribution on trapping kinetics. Next, in Sec. IV we the contrary, the end-bead is trapped at the first encounter
show how these results can be extended to describe the awith any trap and gets immobilized anchoring the whole
choring kinetics of a Rouse polymer chain and analyze difchain. As we have already mentioned, from the physical
ferent kinetic regimes. Finally, we conclude in Sec. V with apoint of view such a model mimics the situation with

summary and discussion of our results. PDMS-OH molecules diffusing on silicon wafers with the
silanol sites; here, the silanol sites, i.e., the traps, may form
II. THE MODEL strong chemical bonds with the OH groufend-bead im-

mobilizing them. On the other hand, these sites form only
Consider a polymer chain deposited on a two-dimensionalveak hydrogen bonds with any other monomer of the PDMS
solid surface, Fig. 1, and forming no loops in the directionmolecule. These weak bonds create an addititsrahl) bar-
perpendicular to the surface. The chain consistdNefl  rier against the lateral motion; we suppose that the influence
identical beads, connected into the chain by harmoniof the silanol sites on the dynamics of the PDMS monomers
springs with rigidityy, x=2T/b? T being the temperature can be accounted for by introducing some effective friction
of the solid substrate ankl being the average distance be- coefficient . A nontrivial question, as a matter of fact, of
tween the beads. The radii of the beads are denoted by twene form of this friction coefficient and its dependence on the
dimensional(time-dependentvectorsr,, n being the num-  polymer length will be discussed elsewhere.
ber of the bead in the chaim=0,... N, N>1. We The property which will be studied here is the probability
suppose that one of the end-beads of the chain, namely tife,(t) that the end-bead of the chain, which is not trapped at
bead withn=0, differs from all others in that it contains a t=0, remains not trapped until tinte Evidently, P.(t) de-
chemically active group, while all other beads are chemicallytermines also the probability that an initially unanchored
inert. Assuming that the springs are phantom, which meanghain remains completely mobile until tinte To calculate
that we discard excluded volume interactions, we have fothe time evolution of this property we will proceed as fol-
the potential energy ({r,}) of the chain lows: we will first present a formally exact expression for
TN P(t) and show how its time dependence can be evaluated
_ . 2 in the simplest case of a trivial chain with=0, i.e., a single
U({r”})_zfo UlTn1=rn)= E,,Z‘o (fn+1=rn)% (1) chemically active monomer. This will allow us to explain
some basic methods and highlight the representative realiza-
The effect of the excluded volume interactions on the antions of disorder and of the monomer trajectories which sup-
choring kinetics, which can be rather important for two- port the intermediate and the long-time evolutionRyf(t).
dimensional systems, will be discussed in detail elsewheréNext, we will discuss the characteristic features of dynamics
Here we will present only some brief comments on this pointof the polymer chain end-bead, which will allow then for a
at the very end of the paper. rather straightforward generalization of the monomer trap-
Further on, we suppose that the beads experience an aging problem to a more complicated case with the end-bead
tion of random forces, which originate from chaotic, thermalof a long polymer chain.

N—-1
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lll. A REMINDER ON THE MONOMER TRAPPING domly placedM traps, modeled ad-dimensional spheres of
PROBLEM IN D-DIMENSIONAL SYSTEMS radiusa. Positions of the traps are denoted {83}, where
) . . . . ' the subscripf numerates the trapg=1, ... M. The prob-
To fix the ideas, it seems instructive to recall first theability Voofti{R}}) that, for a given realizatiodR;} of
the case of a chemically active monomer diffusingdili- o o
mensions and reacting with randomly placed, immobile per—any of M traps until timet is given by(see, €..[19,22)
fect traps. It is intuitively clear that in our case with a chemi- . M
cally active monomer attached to a chain, we should retrieve Vol {R}) = EQ{ ex;{ _ fodt,,zl W(ro(t)—R;) ] ,
the diffusion coefficientthe behavior predicted for a single €)
monomer, since for a finite chain random motion of any bead ) i ,
of the chain ultimately converges to conventional diffusion'Vhere the potential(rq(t) —R)) is the step function, cen-
with a renormalized diffusion coefficierftl6]. At shorter t€red around the position of thjéh trap, such that
because of essentially nondiffusive behavior of the end-bead, W(r)= (4)
induced by internal relaxations of the chain. 0 |r|>a,
The problem of a kinetic description of chemical reactions .
between diffusive particles and immobile, randomly distrib-while the symboE{ } denotes expectation on the complete
the past two decades. Different analytical techniques havgote parenthetically that Eq(3), which determines the
been elaborated, including an extension of the “optimal fluc-monomer survival probability for a fixed configuration of
tuation” method[17], different methods of boundsee, e.g., traps, is not, of course, only limited to the case whiytt)}
[18—27), Green functions approacf22], field-theoretic —describes conventional diffusion; E) is formally exact
scriptions(see[14,24,29 and references therginThe inter-  tion of the end-bead of a polymer chain, provided that the
est in this problem was inspired by the physical significancedperatorEy, is properly defined. _
of the subject and, last but not least, by an early observation In what follows we will be interested, however, not in the
[17] that the long-time survival probability of diffusive par- behavior of the realization-dependent probability
ior, which is relevant to the so-called Lifschitz singularities Pyor(t), defined as
near the edge of the band in the density of states of a particle
in quantum Lorentz gas. Later worlsee, e.g.[22,23) have Prmord ) = (¥ mor E{R )Ry » 5
also pointed out the relevance of the issue to the problems of
polymers, as well as the anomalous behavior of the groundaveraging with respect to the distribution of traps positions
state energy of the Witten's toy Hamiltonian of supersym-{R;}. For random uncorrelate@Poisson distribution of the
metric quantum mechani¢&6. traps, such an averaging can be carried out straightforwardly
Consider a single monomer, which diffusesith diffu- [19,22. Turning to the limitV,M —« and keeping the ratio

kinetic behavior ofPer(t) in the simplified cas=0, i.e., traps’ distribution, a diffusive monomer will not encounter
at sufficiently large timegand up to some renormalization of

times, however, substantial deviations should be observed

uted traps has been widely discussed in the literature withiget {1 of trajectories{rq(t)} of a diffusive monomer. We
treatmentg 23], as well as a variety of mean-field-type de- for anytype of random or regular motion, including the mo-
ticles exhibits highly nontrivial, fluctuation-induced behav- ¥ o (t;{R;}), but rather of its realization-averaged value
percolation, self-avoiding random walks, or self-attractingwhere the angular brackets denote here and henceforth the
sion coefficientDy) in a d-dimensional volumé/ with ran- ~ M/V=n, fixed, one finds

)=

exp‘ —nt,fRddR( 1—ex;{ - fotdt’W(ro(t’)—R)} ) } )

(6)

M t
Pmon(t):EQ[ 12N <eXF{_ fodt’W(ro(t’)—Rj)

J

where the integral with the subscrigt in the last line of Eq.  (see[18,27] for more details of sizea, since it equals zero
(6) signifies that the integration extends over the entire everywhere except for the vicinity of any point of the par-
dimensional space. It may be worthwhile to note that theticle trajectoryry(t). Consequently, the integral

function
t _ t ’ !
1—exp[—f dt’W(rO(t’)—R)} ng[ro(t)]—fRddR(1—exp[—fodt W(ro(t')—R)
0
)
1, |ro(t")—R|<a, t'e[0;t]
= 0, |ro(t)—R|>a, t'e[0:t] (7 measures the volume swept out by a diffusive spherical par-

ticle of radiusa during timet for a particular realization
is just the indicator function of the so-called Wiener sausagéq(t) of its trajectory. In this regard, the realization-averaged



PRE 58 KINETICS OF ANCHORING OF POLYMER CHAINS ® . .. 6137

probability P,,,(t) can be thought off as the moment gener-ad-dimensional immobile, adsorbing sphere of radijse.,
ating function of the volume of the Wiener sausggee[28]  Kq(t) is the d-dimensional analog of the so-called Smolu-
for more details We also hasten to remark that B§) is ~ chowski constanf29,30[], while
quite general and can also be applied to describe the time
evolution of the probability that the end-bead of the chain
does not encounter any of the traps until tilpeo do this,
we have to define the operatBg, as an expectation on the
set of the end-bead trajectories, whose properties, in generglhere(the propagatorG(r;t) is the probability of finding a
will be different from those of a single monomer. diffusive particle at distancefrom the starting point at time
The expression in the last line of E(6) determines an t. Explicitly, one has that in the limit>a%/D, the expecta-
exact solution of the monomer trapping problem, which istijon of the Wiener sausage volume or the time integral of the

valid at all times. Calculation 0P (t) amounts now to  Smoluchowski-type constant shows the following asymptoti-
performing averaging over the monomer trajectories. Suclka| behavior:

an averaging procedure has been extensively discussed in

[17-19,22 using different types of analytical approaches. t

Here we intentionally choose a method of bounds among EQ{sz[rO(t)]}:j dt'Kq(t")

other theoretical considerations, because it gives us a possi- 0

bility not only to display in the most simple fashion the 47aDt, d=3
evolution ofP,,o(t) at intermediate and large times, but also 2 _

to highlight the representative monomer trajectories, which ~\ 47Dot/In(4Dot/a%), d=2 (14
support the corresponding decay pattern. This method allows 4(Dot/m)*?, d=1,

also for a rather straightforward computation of the analo-

gous probability not to encounter any of the traps until timewhich thus depends on the spatial dimengdorThis implies

t in a more complicated situation with an active particle at-that in systems of different dimensionality the typical num-

G(r;)\)=f:dtexp(—)\t)G(r;t), (13

tached to a polymer chain. ber of intersections of the Wiener sausage behaves quite dif-
ferently. Discussion of this point in terms of compact and
A. Intermediate-time behavior of P,on(t) noncompact exploration of space by random walk trajecto-

lowi ¢ | : ries, as well as the relation between the mean volume of the
Following Ref.[22], a lower bound oo (t) iN EQ.(6)  \yiener sausage and the Smoluchowski-type rate constant,

which describes properly the intermediate-time decay pattery,, o presented first ifi81]. We note also that Eq12) allows
can be readily found by making use of the Jensen-type ing

DA .for computation of the mean Wiener sausage volume for the
equality; this states that the averaged value of an eXpO”ent'?Sajectories of the end-bead, provided that its propagator

of some random functiofi is greater than or equal to the G

r;t) is known(see Sec. IV
exponential of the averaged value of this function; i.e., enlr3) ( A

Consequently, the bound based on the Jensen-type in-
E{exp(— f)}=exp —E{f}). (9)  equality leads to the result

. t
Flence, by setting Pmormzps,mo(t):exr{ —n, [ avkge
0

t
f=ex —nf dR| 1—ex —fdt’Wr t")—-R , i . .
pr ") g ( F{ 0 [Fo(t) ]DJ where the expression on the right-hand side of @§), as
(10 first noted in[22], is tantamount to the solution of the mono-

) ) o i mer trapping problem in terms of the celebrated Smolu-
and applying the inequality in E¢9), one finds thaPno{t)  chowski approacti29,30. It is well known from numerical

. (19

can be bounded from below by studies of the monomer trapping probleisee, e.g.[32])
that an approximationP o (t) ~Pgmo(t) describes fairly
Prnor(t)=exp(—yEa{Vad ro(t) 1. (1) \yell the intermediate time behavior of the survival probabil-

ity and fails to describe the decay properly only at very large
times, when certain fluctuation effects come into play. The
rossover times from the intermediate-time to the
Tuctuation-induced behavior will be discussed in the next

The time evolution of the functiokq{V,J ro(t)]} has been
discussed, in particular, in Refi22] and[28]. It has been
shown that expectation of the Wiener sausage volume obe

> R(RY) subsection.
Eo{Vudro(O]}=Sy | r®*drL, NG(an)
a ’ B. Long-time behavior of Pn(t)
=ftdt’K (t') (12) Note now that the just outlined derivatid22] of the
0 s Smoluchowski-type result in Eq15) demonstrates that an

approximationP ,o{(t) =~ Psmo(t) is equivalent to a certain
where Sy is the surface area of d-dimensional sphere of assumption concerning the representative class of the mono-
radiusa, Sy=27%%T'(d/2), T'(x) being the gamma func- mer’s trajectoriesr(t), which is embodied in the Jensen
tion,ﬁ;l[] denotes the inverse Laplace-transform operatorinequality. This can be most easily seen if we $et
Kg4(t) is equal to the diffusive current through the surface ofexp(—f) and rewrite formally the inequality in E¢9) as
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E{F}=exd E{In(F)}]. (16) (ii) Let us define the subsai. To do this, we first as-
sume, without lack of generality, that a diffusive monomer is
One notices now that the Jensen inequality &.bounds at the origin att=0 and that the trap nearest to the origin,
the averaged value of the functiorfalby an exponential of ~say, the trap withj =1, is at distancdR. Now, we stipulate
the averaged logarithm of this functional; since a logarithmthat is formed by such trajectories(t) which start at the
is a very slowly varying function, it is generally believed that origin att=0 and during time intervat do not cross the
the behavior of the averaged logarithm of some functional isurface of ad-dimensional sphere of radilR. (Actually, it
supported by typical realizations of disorder. Consequentlymeans that the number of traps is effectively increased by
one may claim that the Smoluchowski-type decay lawintroducing additional traps which cover completely the sur-
Pmor(1) =Psmo(t),  which  describes properly the face of ad-dimensional sphere of radil® centered around
intermediate-time behavior, is supported typical realiza-  the origin. This certainly can only diminish the boun&or
tions of random walk trajectoriesy(t), i.e., such thaty(t)  the trajectories(t) e w, we evidently have that
~t12In what follows we will thus refer to the behavior "
supported by typical realizations of random walk trajectories v, ,
as themean-field typéehavior. 11:[1 exp{ - fodt W(ro(t")—R))|=1, (19
On the other hand, at completely random placement of

traps their local density will deviate throughout the volumegjnce neither of such trajectories reaches any of the traps.

from the volume-average valug,; there will be spatial re-  consequently, we find from Eq18) that
gions in which the density of traps is higher thap, as well

as regions containing no traps at all. One may thus expect M t
that at larget only those monomers will survive that appear Eg) | exp{ —f dt'W(ro(t')— R]-)} =P(R;t)=E_{1},
initially in sufficiently large trap-free regions and do not =1 0

j=
leave these regions until timte Such restricted, atypical tra- (20

jectoriesro(t), which also belong to the st and which are in which’P(R;t) denotes the measure of the trajectories com-

not taken into account in the Smoluchowski solution, will prising the subseb. Eventually, one finds that the monomer
contribute additively to the value of the probabil®y,,(t). furvival probability is bounded b§20,27

Consequently, one may expect that the overall probabilit
Pmor(t) will be of the form (see[22] for more details

Por) = Psmof( 1) + Py (1), 17 Prod ) =PROPAR), D

where the first term determines the behavior stemming out ohere’P(R) is the probability of having a trap-free spherical

typical realizations of random walk trajectories, while the void of radiusR. _ o

second one represents the contribution of constrained trajec- FOr random uncorrelatetPoisson distribution of traps

tories entirely remaining within the trap-free regions. the probability of finding a spherical cavity of radilscom-
Let us discuss now in more detail the contribution to thePletely devoid of traps is given by

overall survival probability stemming out of the constrained, d

atypical trajectories. As in the preceding subsection, we will P(R)~exp(—nywqRY), (22)

determine their contribution evaluating a lower bound on _ a2 i

P.o(t); for this purpose we adapt to the path-integral for-Where vqa=[277%/dl'(d/2)] is the volume of ad-

mulation of the problem the approach developed originallydimensional sphere of unit radius. The measg(&t) of

for three-dimensional systems in Rd27] and, indepen- trajectories comprising the _subset equals the prpbablllty

dently, for arbitraryd in Ref. [20]. that a dlffL_sze particle, which sfcarts at thg ongmtafp,
We start again with the expression for the survival prob-do€s not hit the sphere [t =R until time't. This probability

ability of a monomer diffusing in the presence of traps fixed!S given asymptotically by

at positions{R;}, which is given by Eq(3). The basic idea

for evaluating the lower bound on the right-hand side of Eq. P(R:t)~exp| — %

(3) and, subsequently, dR,,(t), is now as follows. ' Yd R2
(i) Suppose that in calculating an expectation of a positive

definite fun(_:tional on a set of random _Walk trajectories We,, being a dimensionlesg-dependent numbery, ;= w2,

extend the integration not over the entire set of all possiblyndy,~2.41. Combining Eqs23), (22), and(21) one finds

trajectories(2, but only over some subsetof it, we Q. In  [20,27

doing so, we evidently diminish the actual averaged value;

consequently, one has

: (23

Dot

0
Pmon(t)zexi{ - Yd?_ ntrUde ) (24

Eqo exp{—f dt’W(ro(t’)—R)}
i=1 0 ] which bound is valid forany value ofR. Hence, one has to
M . choose suchR which provides the maximal value to the
>Ew[ H ex;{_f dt’W(ro(t’)—RJ—)”_ (18) rlght-hand side of Eq(24). The maximal lower bound ob-
=1 0 tains for
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(2% D°t>”(d+2) Pinor(t)= Py (1) =exp(— van @ 2(Det) V(@*2),  (26)
R=R*(t)=|5— (25
dvd ntr

where vy are d-dependent numerical factors; in particular,
Note now thatR* (t) shows a slow growth with time. This for two- and three-dimensional systemg is given, respec-
implies that as time progresses larger and larger trap-fregyvely, by v,=2z,\/7, wherez,~2.405 is the first zero of
voids contribute most importantly. Equati¢B5) allows us  Bessel functionly(x), and v3=5x 457893 [20]. In what
to determine the representative atypical realizations morgyjlows we will refer to the decay laws in Eq26) as
precisely: these are such realizations of random walk trajeGiyctuation-inducedsince such a behavior results from the
tories ro(t) which grow with time not faster thaR*(t)  presence of fluctuations in the spatial distribution of traps
~tY4%2) je., they are essentially more spatially confinedand, respectively, from atypical realizations of random walk
than the typical ones, for which one hagt) ~t2 That this  trajectories.
should be the case is intuitively clear since only those ran- Gathering Eqs(15) and(26), we have now the following
dom walks survive at large times which do not make tooresult for the time evolution oP,,(t) in two-dimensional

large excursions from their starting point. systems, which will serve us in what follows as a point of
The bound corresponding ®=R*(t) now readq20] reference,
|
exfd —4mn,Dot/In(4Dgt/a?)], a’/Dy<t<t,
Pmo) =) exd — v,(nyDgt) Y], t>t,. (27)

In Egs.(27), the timet, denotes the crossover time, separat-can be very small due to the appearance of the factor
ing the Smoluchowski-type and the fluctuation-induced ki-—In(oy) in the exponent. Equatiof29) suggests that in two

netic regimes; this characteristic time is given by dimensions the values &) at the crossover will equal
108 10 %% 10 *2 and 10 for o, equal to 0.25, 0.10,
z2a? 7 0.05, and 0.01, respectively. We set out to show, however,
tC:4DOUtr n2<0—tr), (28)  that for a chemically active monomer attached tdoag

polymer chain the situation may change considerably such

_ ) ) ) that the value oP,.(t) at the crossover timg, will not be

in which equation the parameter=ra’n;, determines the that small. This resembles, in a way, behavior predicted for

area of the surface covered by traps. the reverse counterpart of the problem to be considered
Lastly, several comments on the magnitude of the crosshere—the trapping of diffusive monomers on traps arranged

over time and the relative importance of two regimes dis§y polymer chains. For this problem it has also been shown

played in Eq.(27) are in order. On comparing the terms in that the fluctuation-induced behavior starts at much earlier

the exponentials of Eq$15) and(26), we infer that atypical  times and most of particles are trapped via the fluctuation-

realizations become progressively more important at sucthduced mechanisifil4]. We also note that a similar effect

times whenD,t, becomes greater tham, *, oy *In*(oy),  of strong reinforcement of the magnitude of the fluctuation-

anda, **for one-, two-, and three-dimensional systems, reinduced kinetics has been predicted for reactions involving

spectively. Thus the crossover time may be quite large foactive particles attached to movable polymer chains in solu-

systems in which the area covered by traps is low. Moreovettjon [33].

there is another subtle circumstance which makes the

fluctuation-induced tail, generally speaking, not pertinent for

real experimental systems. Namely, the point is that the V. ANCHORING KINETICS OF A ROUSE POLYMER

amount of particles reacting at the intermediate-time CHAIN WITH A CHEMICALLY ACTIVE END-BEAD

Smoluchowski-type kinetic stage is usually comparable to

the total amount of particles in the system such that up to thﬁ1

timet. only a few particles are left. Numerical simulations of P.(1) that an active monomer attached to one of the ex-

the monomer trapping kinetigsee[32]), which observe the tremities of a Rouse polymer chain still remains untrapped

_Smoluchowskl-type reg|me_and enter into the qu_ctuatlpn-um" time t. Consequently, as in the case with a single dif-
induced one, suggest that, in particular, in three dimensio

the fluctuation-induced regime shows up wiin, {(t) drops "Risive monomer, we have to determine the form of two es-
below 10 26 10°25 10-3 and 10 & for o-trlelieq'ubal t 0.25, sential parameters: the Smoluchowski-type constant describ-

. . : . ing reactions between the active end-bead and traps, and the
0.10, 0.05, and 0.01, re;pecuyely. In two Q|men3|ons thISprobabilityP(R;t) that the end-bead of a long polymer chain
should not be so dramatic as in 3D, but still the value of . "\ o trap-free cavity of radid® until time t
Pmor(tc), which is defined as While behavior ofK4(t) has been already discussed in the
) ) literature within the context of reactions between particles
Pmor(te) ~exd —zgIn(zg/ o) ], (29 attached to polymer&see Refs[14,31,33), the form of the

In this section we will make use of the bounds, displayed
Egs. (15 and (26), for computation of the probability
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probability P(R;t) has not been considered so far. Clearly,sions for the time correlation functions of the normal coor-
computation of bottK 4(t) and P(R;t) requires the knowl- dinates. One finds after some simple calculations

edge of the end-bead dynamics. )

k 2—
@(k)=ex% - Zrn:o(t)

=exp(—k?Dy7), (36)
A. Langevin dynamics of the end-bead

of a Rouse polymer chain . . . . .
oy where the effective “time”7 is a single-valued complicated

Let us briefly outline the Langevin equation description of function of real timet:
the Rouse polymer chain dynamics on a two-dimensional
surface. In neglect of the excluded volume interactions and
regarding the number of the bead in the chain as a continu- r=r(t)=—+——>, p 2
ous variablene[0,N], one has that dynamics of the vector N Np=1
of the nth bead is governed by the following Rouse-
Langevin equatiorffor more details sefl6]):

Equation(36) implies that the probability of finding the end-
bead at distance from the starting point at timeis a stan-

ar- 2T 92 dard Gaussian function
n n
W_FW+£“(U’ (30) . ,
where ,(t) are random forces, whose properties are de- Ger(rit)= 47Dg7(t) exp(— 4Dy7(t))" (38)

scribed by Eq(2). Solution of Eq.(30), which corresponds _
to the free boundary conditions at the chain extremfti&, =~ Consequently, dynamics of the end-bead of a polymer can be

ie., considered as that of a single monomer evolving in time
Asymptotical dependence efont can be readily calcu-
arp—o(t arp=n(t lated from Eq.(37), which gives
o) _ o Ion(®) o -
on on
b d h f the f UN, R 39
. . . )~
can be written down as the Fourier series of the form 7(t) b(t/mDyg) 2 t< 1. (39
S pmn Equation (39) signifies thatr scales with time differentl
r(t)= X, coq — |, 32 a 9 T y
() pr P S( N ) (32 depending on whethdris less than or greater than the fun-

damental relaxation timeg. We note also that the end-bead
where the two-dimensional vectoxs, are the normal coor- mean-square displaceme(WISD) displays different time-
dinates of Eq(30) (see[16]). For further analysis it suffices behavior fort<rg andt>rg; for t< g the motion of the
to know only their time correlation functions: end-bead is due mainly to the internal relaxation of the chain.
At such time scales

VEETVET DOTR pzt
Xp.a(1)Xq.ar(0)=8p 400 ar N—exp( -— (33

7 - Dot

m~4b(—) " 0
a

for p>0, and L . e .
which differs from conventional diffusion law in that the

2Dt trajectory of the end-bead is spatially more confined. In the
[Xo.0(t) = X0,a(0) [ Xoar (1) = X0 (0)]= 0a,ar — opposite time limit,t> 75, the chain diffuses as one entity
(34) and the end-bead trajectories follow the motion of the
chain’s center of mass. In this regime the end-bead MSD
for p=0. In Egs.(33) and(34), the symbolsy,a’=x,y de-  obeys
note, as before, the Cartesian components of the normal co-
ordinates andrg is the largest relaxation time of the chain,
Tr=D0b?N?/27%D,. Physically,7s can be interpreted as being
the time needed for some local defect, e.g., kink, to spread
out diffusive|y with diffusion Constan]Do a|0ng the ar- i.e., conventional diffusion law with reduced diffusion coef-
clengthbN of the chain. ficientD=Dy/N.

Now, the property of interest for us is the moment gener- We close this subsection with the foIIowing conclusion.
ating function for displacements of the chain’s end-beadPynamics of the end-bead of a Rouse polymer is strongly
which determines its propagat@(r;t) and thus contains influenced by the presence of the polymeric “tail;” at times
the information we need for calculation dfy(t) and less than the fundamental time the end-bead trajectories

4Dt
r2_o(t)= N (41)

P(R;t). The moment generation function is defined as are spatially more confined compared to conventional diffu-
sion and its MSD shows a sublinear growth with time, Eq.
d(k)=exdik-r,_o(t)]. (35 (40). At greater times, the MSD grows linearly with time but

the diffusion coefficient is a factor of N/less than that for a
The averaging in Eq(35) over Gaussian white noise can be monomer, Eq(41). Nonetheless, in view of the form of Egs.
performed straightforwardly, using E¢32) and the expres- (36) and (38), the dynamics of the chain’s end-bead can be
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considered as that of an individual diffusive monomer, which [m]d/z

evolves in effective “time” 7. We will use this observation Ky(t)~—. (42

in what follows to estimate the time evolution Kf;(t) and t

P(R;1). For a Rouse chain on a two-dimensional substrate, it gives,
in particular,

B. Time evolution of P (t)

D 1/2

Consider first the contribution tB(t) stemming out of Kz(t)Nb(To) : (43
typical realizations of the end-bead trajectories, which prob-
lem amounts to calculation of the Smoluchowski-type con-On the other hand, within the opposite limit, i.e., for
stantK4(t) for an active group attached to a polymer chain.> 7z, when conventional diffusive motion with a renormal-
This question was first addressed 81] and[33] within the  ized diffusion coefficient is restored, one hamp to the re-
context of chemical reactions involving particles attached tgplacemenD,— D,/N) conventional behavior as in E(L4).
movable polymer chains in solutidfor a general discussion Let us now compute the time evolution of the Smolu-
see[14]). It has been shown that the form of the time depen-chowski constant making use of E@.2), which will allow
dence ofK4(t) depends on the time of observatibonfor  us to determine also the prefactors. Substituting the propaga-
timest less than the largest relaxation time of the chain, theor in Eq.(38) into Eqg.(12), we have that for the end-bead of
Smoluchowski-type constant for a chemically active mono-a Rouse polymer chain the expectation of the Wiener sau-
mer attached to a polymer chain should follp8d] sage volume obeys

f dtexd —At—a?/4Dy7(t)]
0

E{Vud M=ot} =47DoL " (44)

A jwdtr‘l(t)exr[— At—a?/4Dy7(t)]
0

Consider the asymptotical behavior BV, Jr,-o(t)]} in  such a time dependence both integrals in Egl) can be
the limitst<rg andt> 7. Supposing thaty is large and performed explicitly. This yields, upon some straightforward
setting 7(t) =b(t/ 7Do)*?, we find that the integrals in the calculations, the following result:

nominator and the denominator in E@4) behave as A

t
and w(Do/\)Y%/b, respectively. One finds then E{sz[rnzo(t)]}:f dt’K(t')
0

E{sz[rnzo(t)]}=Jotdt’Kz(t’)~8b(Dot/w)1/2, (45) ~47Dt/NIn(4Dot/a®N),  (46)

which is valid for timest> rz. Consequently, we find that
which holds for the time intervah?/D,<t<7g. Next, we  the time evolution of(t) due totypical trajectories of the
have that in the limit> 7 the effective timer(t)~t/N. For  end-bead is defined by

exf —8bny(Dyt/7)Y?], a?/Do<t<rg

PsmO(t)%[ex;{—4wnt,Dot/N In(4Dyt/a2N)], t>1g, @7

where the first line in Eq(47) corresponds to the subdiffu- within such a cavity until timer(t). Such an assumption

sive motion of the chemically active end-bead, while thegives

second one describes the Smoluchowski-type decay pattern

in the regime when the trajectories of the end-bead start to

follow the motion of the chain’s center of mass. P(R't)mexp( —, DoT(t))
To consider now the contribution to the decay of the ' 2 Rz |

atypical realizations of the end-bead trajectories, constrained

not to leave the fluctuation trap-free voids until timhewe

suppose that the probability that the end-bead remains with ldence, the contribution tB.,(t) due to atypical realizations

circular trap-free void of radiu®R until time t equals the of the polymer end-bead trajectories can be found by maxi-

probability that an individual diffusive particle remains mizing (with respect toR) the following expression:

(48)
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Dyr(t) Consequently, the contribution due to atypical realizations
0 , (49  can be written down explicitly as

Pﬂ(t)%ma{ exp( Ny R =y, ——
R R _ 12 1/4 2
P ( ) EX[{ Vz(bntr) (Dot/'ﬂ') ], a /Do<t<TR
f(t)~

where the first term determines the probability of having a exd — v2(nyDot/N) Y], t>7g.
trap-free circle of radiu®k, while the second one gives the (52)

probability that the end-bead remains within such a circlengyy, to construct an actual decay pattern describing the an-
until ime t. _ _ _ choring kinetics in the case of an active monomer attached to
~ Maximizing the right-hand side of Ed49), one readily 5 polymer chain, we have to compare four different decay
finds that the value oR which ylelds the maximal value of laws d|sp|ayed in Eqi47) and (51) and calculate the corre-

the lower bound is given by sponding crossover times. From H47), which states that
the mean-field and the fluctuation-induced decay laws
2, Dor(t)| ¥4 (Dot/nfr)llg, t<7g complement gach othgr, we infer that different possib[e se-
R=R*(t)= 0. ~ 14 guences of kinetic regimes may be observed, depending on
v Ny (Dot/Nng) ™, t>17g, the magnitude of the parametems and N, or, more pre-

(50 cisely, depending on the relation betwegnandR,, where

o _ _ o Ry=bN*?is the chain’s gyration radius.
which implies that the representative atypical realizations of ~|et us start with the case of sufficiently short chains and
the end-bead trajectories behave differently depending on thew trap concentration, which limit is described by two in-
scale of observation; for timedess thanrg, atypical trajec-  equalitiesiabn,<1 andn,R2<1. In this case we predict for

i gy T E . ) g .
tories ofry(t) do not grow faster that'®, while within the  the time evolution ofP(t) the following sequence of re-
opposite limit they are constrained by(t)<R*(t)~tY%  gimes:

exf —8bny(Dot/ )], a’/Dy<t<rtg
P.(t)~4 exd —4mn,Dot/NIn(4Dgt/aN)], TR<t<t, (52)
exf — vo(nyDot/)¥?], t>t,,

where the crossover time from the Smoluchowski-type betaw is low, since P, {(t= TR)~exp(—8(ntrR§)/(21-r)l’Z)
havior to the long-time fluctuation-induced tail is given by <1 consequently, here we encounter essentially the same
22a2N 2 behavior as in the monomer trapping problgsee Eq(27)];
te= 2(_0 , (53 we note that eveR . (t=t.) appears to be the same as that
4Dooy in Eq. (29). Hence, in this limit the only effect of the poly-

i.e., it is greater by a factor o than the corresponding merl tar:I 'Sk. that thz Eros;over .tlm.ed bet(\;vet()enh the
crossover time for the monomer trapping problem. Smoluchowski-type and the fluctuation-induced behavior

Compare now the relative importance of the kinetic re-96ts increased. o .
gimes displayed in Eq(52). First of all, we note that the Next we turn to the opposite limit of long chains, such
Smoluchowski-type regime associated with the subdiffusivéhatngR>1, but still assume that the trap concentration is
behavior of the end-beddirst line in Eq.(52)] is not repre-  sufficiently small andabn,<1. Here the comparison of the
sentative: although it can persist over a wide time rangg if decay laws in Eqs(47) and (51 suggests that the overall
is large, the number of active groups trapped via this decaglecay pattern is a succession of three different regimes:

Oy

exfd —8bny(Dot/m)*?], a%IDy<t<t,=Zzym?4*Dy(bny)?
Per(t) =1 ex —va(bng) YADot/m) ™),  t<t<mg, (54)
ex — va(nyDot/N) ], t>7g,
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i.e., the Smoluchowski-type decay law associated with theinchanged except that will enter in a somewhat different
subdiffusive motion of the end-bead, the fluctuation-inducecpower. Lastly, we would like to mention that our qualitative
regime corresponding to the same anomalous motion of theonclusions concerning different realizations of disorder
end-bead, and lastly, the fluctuation-induced regime correwhich support the intermediate-time and long-time behaviors
sponding to conventional diffusive motidwith renormal-  will hold even in the presence of the excluded-volume inter-
ized diffusion coefficientof the end-bead. actions; in other words, we expect that also in this case the
We note now that in the Iim'mtrRS>1, the crossover time intermediate-time behavior d?.(t) will be supported by
t. from the Smoluchowski-type to the fluctuation-inducedtypical realizations of the end-bead trajectories, while the

behavior is given by long-time behavior will stem out from the interplay between
— the internal relaxations of the chain and fluctuations in the
te~(Dob%oy) ™, (55  spatial distribution of traps.

i.e., it is proportional to the second inverse powewbgfand
can be large ifo,<1 (but still less thanrg). Taking the V. CONCLUSIONS

value of Pey(t) at the crossover time,, we find that To summarize, we have studied Rouse-Langevin dynam-
PCh(tC)’_NVeXp(_ 772(2)/2)’ .., Itis m_dependent ef both the con- g of an isolated polymer chain bearing a chemically active
centration of traps and the chain length. Since ffygtc) = functional group, attached to one of the chain’s extremities,
~10""" we infer that such a mean-field-type regime willbe g, 5 2p solid substrate with immobile, randomly placed
rather representative; however, the amount of active endshemically active sitedtrapy. For a particular situation
beads of polym_ers_ t_rapped via this law will be substantially,yhen the end-bead of a chain consisting\bsegments can
less as that for individual monomers. Consequently, contrarye irreversibly trapped by any of these sites, which results in
to the previously considered situation with short chains, herg complete anchoring of the whole chain, we calculate the
the amount of polymers anchored via the fluctuation-inducegime eyolution of the probabilitP(t) that the initially un-
decay law in the second line in EG4) will be much higher.  gnchored chain remains mobile until timeWe show that in
Lastly, we note that the value d¥.(t) at the end of this he case of relatively short chains the time evolution of
kinetic stage is P.y(t) proceeds essentially in the same way as that for the

P (t=rs)~exq — (n,R2)Y2], 56 monomer trapping problem; atmtermedlate tinreg(t) fol-

el 1=7r) = (MR ’ 6 lows a standard-form 2D Smoluchowski-type decay law

i.e., it is very small in the limit under consideration. Hence, In Per(t) ~ —t/N In(t), which crosses over at very large times
the regime described by the third line in E§4) will not be O the fluctuation-induced st.retched-exponentlel dependence
observed. In P(t)~ — (t/N)Y2, stemming out of fluctuations in the

We close our ana|ysis with some remarks Concerning thépatlal distribution of traps. We find next that for |Ong chains
excluded-volume effects, which are discarded here but matje kinetic behavior is quite different; here two representa-
be certainly very important, especially for two-dimensionaltive kinetic stages are the intermediate-time decay of the
systems. We note that excluded-volume interactions impos@rm In Pei(t)~ —t*2 while the long-time stage is described
additional constraints on the end-bead dynamics which wilby the dependence Ry(t)~—t"* The intermediate-time
result apparenﬂy in a slower growth, Compared to aql)' decay is the Smoluchowski-type law associated with subdif-
of the end-bead MSD at the intermediate tin{esss than fusive motion of the end-bead, while the long-time
characteristic relaxation time of the 2D chain with excluded-fluctuation-induced decay stems out of the interplay between
volume interactions and a strongeN dependence, com- fluctuations in traps distribution and internal relaxations of
pared to Eq(41), of the end-bead diffusion coefficient in the the chain.
long-time limit. Consequently, one expects that the behavior
in Egs. (479 and (518, [and accordingly, the intermediate
kinetic stages in Eqs(523, (548, and (54b)], which are ACKNOWLEDGMENTS
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